disc 105
Wednesday, February 17, $2021 \quad$ 11:58 AM

Math 128a - Week 5 Worksheet GSI: Izak, (2/17/21)

2.3 Problems

Problem 1. Derive the error formula for Newton's method:

$$
\left|p-p_{n+1}\right| \leq \frac{M}{2\left|f^{\prime}\left(p_{n}\right)\right|^{2}}\left|p-p_{n}\right|^{2} \quad x_{j}=P_{1}^{(0)}
$$

2.5 Problems
Problem 2. Steffensen's method is applied to a function $g(x)$ using $p_{0}^{(0)}=1, p_{2}^{(0)}=3$ to obtains $p_{0}^{(1)}=.75$.

Problem 2. Steffensen's method is applied to a function $g(x)$ using $p_{0}^{()}=1, p_{2}^{()}=3$ to obtain g $p_{0}^{()}=.75$
What is $p_{1}^{(0)}$?
2.6 Problems

Problem 3. Use Horner's method to evaluate $P(x)=7 x^{4}-2 x^{2}-5 x-3$ at $x=1$
3.1 Problems

Problem 4. Given $f(x)=x^{3}-4 x^{2}+4$, find the Lagrange interpolation polynomial of degree at most three Problem 4. Given $f(x)=x^{3}-4 x^{2}+4$, find the
using the nodes $x_{0}=-3, x_{1}=-1, x_{2}=1, x_{3}=5$
Problem 5. Let $x_{0}=-1, x_{1}=0, x_{2}=1$, define $f_{0}(x)=x^{2}-1, f_{1}(x)=2 x^{2}+3 x, f_{2}(x)=-x^{2}+2 x$ Evaluate these polynomials at x_{i}. Uses this to find a polynomial of degree at most 2 such that $g\left(x_{0}\right)=$ $-4, g\left(x_{1}\right)=-1$, and $g\left(x_{2}\right)=6$ without preforming any tedious computations
3)
2) $.75:=\Delta^{2}\left(p_{0}^{(s)}, p_{1}^{(0)}, p_{2}^{(0)}\right)$

$$
=1-\frac{(x-1)^{2}}{3-2 x+1}
$$

$$
\text { Solve for } x, \quad x=\{0,1.5\}
$$

$$
\begin{aligned}
& f(x)=f\left(p_{n}\right)+f^{\prime}\left(p_{n}\right)\left(x-p_{n}\right)+\frac{f^{\prime \prime}(\xi)\left(x-p_{n}\right)^{2}}{2} \\
& \begin{array}{l}
e_{x}=p \\
0=f(p)=f(p)+f^{\prime}\left(p_{n}\right)\left(p-p_{n}\right)+\frac{f^{\prime \prime}(\xi)\left(x-p_{n}\right)^{2}}{2}
\end{array} \\
& 0=\frac{f\left(P_{n}\right)}{f^{\prime}\left(P_{n}\right)}+\left(\mathbb{P}-P_{n}\right)+\frac{f^{\prime \prime}(\xi)\left(x-P_{n}\right)^{2}}{2 f^{\prime}\left(P_{n}\right)} \\
& \int \overline{P_{n+1}}:=P_{n}-\frac{f\left(P_{n}\right)}{f^{\prime}\left(P_{n}\right)} \\
& 0=P-P_{n+1}+\frac{f^{\prime}\left(P_{n}\right)}{f^{\prime \prime}(\xi)\left(x-P_{n}\right)^{2}} \frac{2 f^{\prime}\left(P_{n}\right)}{}
\end{aligned}
$$

.75

	x_{0}	x_{1}	x_{2}
f_{0}	0	-1	0
f_{1}	$-t$	0	5
f_{2}	-3	0	1
g	2	-1	6

$$
\begin{array}{rl}
g \\
g(x) & =f_{0}+f_{1}+f_{2} \\
g(x) & =a f_{0}+b f_{1}+c f_{2} \\
2=g\left(x_{0}\right) & =0 \cdot a-1 \cdot b-3 \cdot c \\
& =-a \\
-1 & 5 b+c \\
u & \left(\begin{array}{c}
\left.\begin{array}{c}
0 \\
-1 \\
0
\end{array}\right] \\
0
\end{array}\right]
\end{array}
$$

If you are given x_{0}, \ldots, x_{n}
Get $L_{n, 0}, \ldots, L_{n, n}$ these are polynomials of degree n
If x_{i}^{\prime} s are distinct, they are a basis of polynomials of degree n
If we want a polynomial f that interpolates on x_{i} then we know that $f(x)=\sum_{k=0}^{n} c_{k} L_{n, k}(x)$
This is true for any basis. But $L_{n, i}$ are good, because the c_{k} are very easy to determine.
They are just $c_{k}=f\left(x_{k}\right)$

